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Radix-R . 2 Quantum Computation
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A quantum mechanical system is presented for which a multiple-valued quantum
algebra and logic are derivable. The system is distinguished from previous
quantum computational proposals by the definition of higher order quantum
algebras and logics derived from multilevel quantum spin systems.

1. INTRODUCTION

The potential impact and applications of quantum computing have

recently been investigated.2 Most of the current literature considers quantum
coherency to be of critical importance. This strict coherence constraint implies

the necessity of isolated quantum systems which do not communicate with

each other or the environment except at measurement (at which time the

information content of the states is corrupted, namely the quantum measure-

ment problem). The present work does not admit this constraint, allowing

for mixed quantum states to encode and process information. The appeal of
this relaxed constraint is that it may be possible to engineer a material system

to perform quantum algebraic and logical operations in condensed matter

systems at high temperatures, thus obviating the need to contain hundreds

of ions in an ion trap at near-absolute zero temperatures.

2. A SIMPLE QUANTUM MECHANICAL FINITE-STATE
MACHINE

Consider a solid system rich in nuclear and electronic spin states (e.g.,

transition metal-doped Bi12 SiO20 as used in Hotaling (1995)). A spin Hamilto-

1 Rome Laboratory/Photonics Division, Air Force Material Command, Rome, New York
13441-4515.

2 Several articles have appeared in the literature and on the world-wide web under the subject
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nian can be derived which allows for photonic perturbation of those electronic

and nuclear spin states (Hotaling, 1996, 1997).

Conjecture 1. A finite-state machine may be realized from spin states

(corresponding to logic levels) in a condensed matter medium and photonic

perturbation (logical connectives) of those states.

As a simple example of a multiple-valued quantum spin system, consider

a system of two particles at fixed positions in space (separated by a distance
r), endowed with spin 1/2, and joined with unit vector n. The state of the

system is given by the state vector

| C & 5 | S, I & (1)

where S and I correspond to the spins of the particles. The set { | s,i . } is the
basis of eigenvectors common to Sz and Iz (in the spin Hilbert space of

spin states).

The magnetic moments of S and I are given by

MS 5 g SS (2)

and

MI 5 g II (3)

Assuming S and I have differing magnetic moments, they will have different

Larmor frequencies when placed in an external B field:

v 1 5 2 g 1B0 (4)

v 2 5 2 g 2B0 (5)

The unperturbed Hamiltonian for the system H 80 is given by

H0 5 v 1Sz 1 v 2Iz (6)

The interaction Hamiltonian * for this simplified quantum system is

given by

* 5
m 0

4 p

g S g I

r 3 [S ? I 2 3(S ? n)(I ? n)] (7)

The state space in which * acts is spanned by the set { | w nlm & J | s,i & },

where | w nlm & is a standard basis in the state space of one of the relative

particles, and | s,i & is the basis of eigenvectors common to Sz and Iz.

Remark 1. The interaction Hamiltonian (dipole±dipole) of equation (7)

neglects several terms, but for the purpose herein, i.e., the description of a

quantum logic and algebra, equation (7) is sufficient. The reader is referred
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to Hotaling (1996, 1997) for a more complete spin Hamiltonian. As in

Hotaling (1995), we are interested in magnetic resonance transitions of the

system, since this technique allows straightforward measurement.

The total Hamiltonian is

H 5 H0 1 * (8)

In equation (8) the interaction Hamiltonian term is treated as a perturba-

tion on H0.

Remark 2. The transitions allowed for the spin resonance condition

(Hotaling, 1995) for magnetic field parallel to the lab x-axis are

| - , - & l | ¯ , - & ; Sx Þ 0 (9)

| - , ¯ & l | ¯ , ¯ & ; Sx Þ 0 (10)

forming a four-state quantum system with four distinct levels, depending
upon which selection rule is chosen. Assume that, as experimentally observed

in Hotaling (1995), incident laser radiation can induce these spin state transi-

tions. Then, for various orientations of applied B field and photon energy,

observable spin states are forced to change in response to incident radiation

(switched). Thus, we have a finite state system with four levels. The Hilbert

space of possible states containing combinations of electronic and nuclear
spin state vectors is finite. Additionally, undefined states are discouraged due

to strict quantum mechanical selection rules and the experimental form of

the perturbation (laser radiation). At some finite energy, the atom may be

ionized, which would lead to loss of data. For construction of a computational

machine, the energy input to the system is strictly lower than that required

to ionize the atoms of the system. This energy constraint is physically realized
through the use of laser radiation as spin state perturbation.

Formally, if we assign to each of the above four quantum levels numeri-

cal values

| - , - & Û 0 (11)

| - , ¯ & Û 1 (12)

| ¯ , ¯ & Û 2 (13)

| ¯ , - & Û 3 (14)

we have the basis for a four-state (finite-state) machine logic. We must now
consider a transformation from physical (measurement) space to the finite

group representation thereof, the elements of which, comprise the logical

states of our finite state computer: the set 6 5 { b { b P {0, 1, 2, 3}}.

Given this ordered set of elements, we write the following axioms:
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Axiom 1. All system states are subsets of 6Ð Zorn’ s Lemma applies.

Axiom 2. Equality relation: We may write the symbol ` 5 ’ as meaning

that logical state b of the system physically corresponds to state | C & . Quantum

mechanically, this implies that | C & i 5 | C & j , or two distinct atomic systems

are physically in the same quantum state | C & . Further, if we assign the
numerical value b to both states, we may say that an element is equal to itself,

b 5 b (15)

Axiom 3. If two elements of S, b i and b j , are equal, then

b i 5 b j then b j 5 b i (16)

Axiom 4. There exists a transitive law:

If b i 5 b j and b j 5 b k, then b i 5 b k (17)

Axiom 5. Closure. Binary operations performed upon elements of :SS

yield elements of 6.

Remark 3. If are(11)±(14) are replaced by (18)±(21) below, we have a

three-state logic which redefines the axioms above. This three state logic is

interesting since it can be used in the context of the radix-4 quantum computer
of the present work to perform Boolean logic, while the mappings of (11)±(14)

are used for arithmetical operations.

| - , - & Û 1 (18)

| - , ¯ & Û 0 1 (19)

| ¯ , - & Û 0 2 (20)

| ¯ , ¯ & Û 2 1 (21)

Axiom 6. All system states are subsets of 6Ð Zorn’ s Lemma applies.

Axiom 7. Equality relation: We can only write the symbol ` 5 ’ as meaning

that the logical state b of the system, which physically corresponds to | C & ,
is physically equal to itself IFF b P { 2 1, 1}. Quantum mechanically, this

implies that | C & 5 | C & , or is physically the same quantum state in two

distinct atomic systems. However, for the zero states, 0+ is a physically

different state than 0 2 . Thus we write the symbol ` | 5 ’ for the three-state

logical equality,

b i |5 b j (22)

Axiom 8. Inequality ( |5 ¤): If b i is not equal to b i
j , then we write

b i |5 ¤ b j (23)
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We have the choice of making the logical decision that 0+ is logically

equivalent to 0 2 , or

0 2 |5 0 1 (24)

or

0 2 |5 ¤0 1 (25)

If we leave this to the choosing of the programmer, then the present
logic has the potential for formulation of NP-complete problms. Choosing

(24) yields the three-state logic, while choosing (25) yields a four-state logic.

Several three-state logics have been discussed in the literature.3

4. CONCLUSION

The present work has presented a proposal for a simple radix-4 finite-

state quantum logic using quantum spin states as logic levels and photon-

induced spin transitions as connectives of that four-state logic. A three-state

logic is seen as a special case of this four-state system. The four-state logic
is easily expandable to yet higher radix algebras and higher order quantum

logics. This would be performed by exploiting material systems with larger

numbers of measurable spin states. For example, the doped Bi12SiO20 sillenite

crystals of Hotaling (1995) showed a rich ENDOR spin structure, including

hyperfine and quadrupole lines. It is apparent that quantum mechanical spin

systems offer the ability to perform calculations in higher radix than 2, and
logic operations with more than two logical truth states. The present work

thus proposes that the mathematics community consider multiple-valued alge-

bras and quantum logics (e.g., Quantales), while concurrently, the physics

community seek to exploit the vast ESR, ENDOR, and NMR spectroscopy

literature for systems capable of encoding and manipulating higher radix data.
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